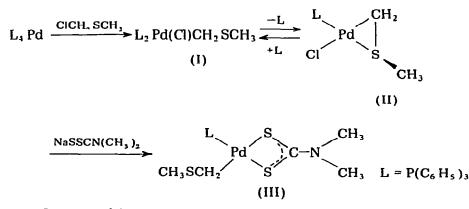
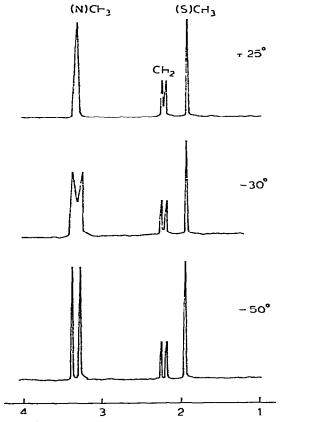
Preliminary communication

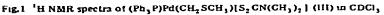

NOVEL PALLADIUM COMPOUNDS CONTAINING A THIOMETHOXY-METHYL GROUP

GOHEI YOSHIDA, YOSHIO MATSUMURA and ROKURO OKAWARA* Department of Applied Chemistry Osaka University Suita Osaka (Japan) (Received March 28th, 1975)

Summary

A novel palladium compound, $(Ph_3P)Pd(Cl)(CH_2SCH_3)$, was prepared in which the CH₃SCH₂ group acts as a chelate ligand, the stereochemically non-rigid property of $(Ph_3P)Pd(CH_2SCH_3)[S_2CN(CH_3)_2]$ was also discussed in terms of the ligating effect of sulfur in this group


The study of transition metal compounds containing the $CH_3 SCH_2$ group is of interest in that this ligand may behave in either a mono or bidentate fashion [1], resulting in novel structural and chemical features. In this paper, we report the preparation and properties of two palladium compounds containing the $CH_3 SCH_2$ group



Compound I was obtained in good yield by the addition of chloromethyl methyl sulfide to a suspension of Pd(Ph₃ P)₄ in benzene at room temperature Molecular weight studies in $CH_2 Cl_2$ at 25 °C show that I partially dissociates with liberation of triphenylphosphine. The triphenylphosphine set free in the solvents on each crystallization of the mixture of I and II from $CH_2 Cl_2 / Et_2 O$

was removed repeatedly by filtration to give finally a monomeric complex II* A preliminary X ray structural determination showed II to be an approximately square-planar complex as depicted above with the (H₂)C-S bond length (1 76 Å) [2] practically the same as that found in the complex $Mo(\pi$ -C, H₅)(CO)₂ (π CH₂SCH₃) (1.78 Å) [3] In the ¹H NMR spectrum^{**} of II in CDCl₃ at -30 °C, the CH₃ and CH₂ protons appear as doublets at δ 2 34 (J(HP) 4 Hz) and δ 2 68 ppm (J(HP) 2 Hz), respectively However, each signal coalesces to a singlet at elevated temperatures The fact that the methylene protons are magnetically equivalent even at -30 °C is best attributed to rapid inversion at the sulfur atom Both coalescenses are probably induced by rapid phosphine exchange at higher temperatures

Treatment of ii in $CH_2 Cl_2$ with NaS₂ $CN(CH_3)_2$ in EtOH at room temperature gave a monomenc complex III As shown in Fig 1, the (N)CH₃ proton resonance of III appears as a singlet at 25 °C, but is split upon cooling

[•] The corresponding platinum analog of II could not be obtained from trans {(Ph₃ P)₂ Pl(Cl)-CH, SCH₃ }

[&]quot;The spectra were recorded at both 60 and 100 MHz

On the other hand, the (N)CH₃ protons of (Ph₃P)PdMe[S₂ CN(CH₃)₂] obtained by treatment of *trans*-[(Ph₃P)₂PdMeI] with NaS₂CN(CH₃)₂ exhibited singlets at δ 3 36 and δ 3 27 ppm in CDCl₃ up to 50 °C The magnetic equivalence of the (N)CH₃ protons of III at 25 °C is possibly associated with the ligating effect of the sulfur atom in the CH₃SCH₂ group in the transition state^{*}

References

- I R B Ling and M B Bisnette Inorg. Chem 4 (1965) 486
- 2 N Kasai et al to be published
- 3 E. Rodulfo de Gil and L F Dahl J Amer Chem Soc 91 (1969) 3751

⁶We believe that in the ground state there is no significant interaction between sulfur in the CH, SCH group and palladium since the (S)CH, proton signals are not coupled to the ³¹P nucleus even at -50 °C (Fig 1)